On the Exportability of Robust Satellite Techniques (RST) for Active Volcano Monitoring
نویسندگان
چکیده
Satellite remote sensing has increasingly become a crucial tool for volcanic activity monitoring thanks to continuous observations at global scale, provided with different spatial/spectral/temporal resolutions, on the base of specific satellite platforms, and at relatively low costs. Among the satellite techniques developed for volcanic activity monitoring, the RST (Robust Satellite Techniques) approach has shown high performances in detecting hot spots as well as in automatically identifying ash plumes, effectively discriminating them from weather clouds. This method, based on an extensive, multi-temporal analysis of long-term time series of homogeneous satellite records, has recently been implemented on EOS-MODIS and MSG-SEVIRI data for which further performance improvements are expected. These satellite systems, in fact, offer improved spectral and/or temporal resolutions. In this paper, some preliminarily results of these analyses are presented, both regarding hot spot identification and ash cloud detection and tracking. The potential of RST, to be used within early warning systems devoted to volcanic hazard monitoring and mitigation, will also be discussed. OPEN ACCESS Remote Sens. 2010, 2 1576
منابع مشابه
Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach
We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Technique...
متن کاملSatellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano
As specifically designed platforms are still unavailable at this point in time, lava flows are usually monitored remotely with the use of meteorological satellites. Generally, meteorological satellites have a low spatial resolution, which leads to uncertain results. This paper presents the first long term satellite monitoring of active lava flows on Stromboli volcano (August–November 2014) at h...
متن کاملRemote Sensing Observations for Volcano Monitoring and Hazard Mitigation
Volcanic eruptions are spectacular but dangerous phenomena to study on-site, and they present many challenges because of the diversity of activity and their remote locations. Indeed, the tragic loss of life at Galeras and Mt. Unzen volcanoes in the early 1990s illustrates the dangers associated with studying active volcanoes at close quarters. However, much progress has been made in volcano rem...
متن کاملDetecting Volcano Deformation in InSAR using Deep learning
Globally 800 million people live within 100 km of a volcano and currently 1500 volcanoes are considered active, but half of these have no ground-based monitoring. Alternatively, satellite radar (InSAR) can be employed to observe volcanic ground deformation, which has shown a significant statistical link to eruptions (Biggs, et al., 2014). Modern satellites provide large coverage with high resol...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 2 شماره
صفحات -
تاریخ انتشار 2010